HORNSBY GIRLS HIGH SCHOOL

Mathematics Extension 2

Year 12 Higher School Certificate Trial Examination Term 3 2024

STUDENT NUMBER:____

STUDENT NAME:

_____ TEACHER:__

General Instructions

- Reading Time 10 minutes
- Working Time 3 hours
- Write using black pen
- NESA-approved calculators may be used
- A reference sheet is provided separately
- In Questions 11 16, show relevant mathematical reasoning and/or calculations
- Marks may be deducted for untidy and poorly arranged work
- Do not use correction fluid or tape
- Do not remove this paper from the examination room

Total marks – 100 Section I Pages 3 - 710 marks Attempt Questions 1 - 10Answer on the Objective Response Answer Sheet provided Section II Pages 8 - 1490 marks Attempt Questions 11 - 16Start each question in a new writing booklet Write your student number on every writing booklet

Question	1-10	11	12	13	14	15	16	Total
Total								
	/10	/15	/15	/15	/15	/15	/15	/100

This assessment task constitutes 30% of the Higher School Certificate Course School Assessment Outcomes assessed: MEX12-1, MEX12-2, MEX12-3, MEX12-4, MEX12-7, MEX12-8, MEX12-9.

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section.

Use the Objective Response answer sheet for Questions 1 - 10

- 1 Which of the following is the correct expression for $\int \frac{-1}{\sqrt{1-16x^2}} dx$?
- (A) $\frac{1}{4}\cos^{-1}\frac{x}{4} + C$
- (B) $4\cos^{-1}\frac{x}{4} + C$
- (C) $\frac{1}{4}\cos^{-1}4x + C$
- (D) $4\cos^{-1}4x + C$
- 2. If \underline{a} , \underline{b} and \underline{c} are the position vectors of the three vertices of a triangle, and $(\underline{b} \underline{a}) = \lambda(\underline{c} \underline{a})$ where $0 < \lambda < 1$ which of the following must be false?
 - (A) Point *B* is diving the interval *AC* in the ratio of $\lambda : (1 \lambda)$ internally.
 - (B) Point *B* is diving the interval *AC* in the ratio of $\lambda : (1 \lambda)$ externally.
 - (C) Points A, B and C are collinear points.
 - (D) $\overrightarrow{AB} \parallel \overrightarrow{AC}$.
- **3** Which of the following statements is true?
 - (A) $\forall a, b \in \mathbb{R} \quad \sin a = \sin b \Longrightarrow a = b$
 - (B) $\forall a, b \in \mathbb{R} |a+b| > |a-b|$
 - (C) $\exists a, b \in \mathbb{R}$ such that $\log_e(a+b) = \log_e(ab)$
 - (D) $\exists a, b \in \mathbb{C} |a+b| > |a|+|b|$

4. Which of the following is the correct expression for $\int x \tan^{-1} x \, dx$

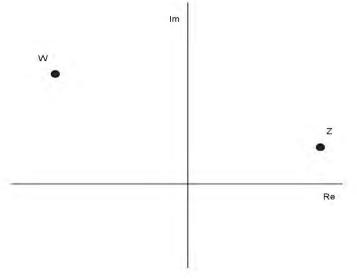
(A)
$$x + \tan^{-1} x + C$$

(B) $\frac{x}{\tan^{-1}x} + \frac{1}{2}\ln(1+x^2) + C$

(C)
$$x \tan^{-1} x + \frac{1}{2} \ln(1 + x^2) + C$$

(D)
$$\frac{x^2}{2} \tan^{-1} x - \frac{1}{2} x + \frac{1}{2} \tan^{-1} x + C$$
.

5 The diagram below shows the position of points z and w, that have position vectors z and w respectively. In which quadrant would the point with position vector $\vec{z} - iw$ lie?



(A) Quadrant 1

(B) Quadrant 2

(C) Quadrant 3

(D) Quadrant 4

6. Consider the statement:

'For any function f(x), f(x) is not continuous at $x = a \Rightarrow f(x)$ is not differentiable at x = a.'

Which of the following statement is correct?

- (A) The converse statement is false and the contrapositive statement is false.
- (B) The converse statement is false and the contrapositive statement is true.
- (C) The converse statement is true and the contrapositive statement is false.
- (D) The converse statement is true and the contrapositive statement is true.

7 Consider the vectors
$$\overline{OA} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
 and \overline{OB} with $|\overline{OB}| = 3$.

Given that $\overrightarrow{OA}.\overrightarrow{OB} = 6$, find in square units, the area of $\triangle OAB$.

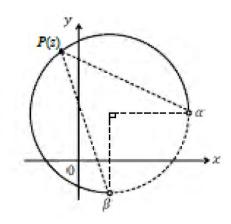
(A)
$$3\sqrt{10}$$

(B) $\frac{3\sqrt{14}}{2}$
(C) $\frac{3\sqrt{10}}{4}$

$$(D) \frac{3\sqrt{10}}{2}$$

8. If
$$\int_{0}^{\pi} \frac{\sin x}{1 + \cos^{2} x} dx = \frac{\pi}{2}$$
, what is the value of $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$?
(A) 0
(B) $\frac{\pi}{2}$
(C) $\frac{\pi^{2}}{2}$
(D) $\frac{\pi^{2}}{4}$

9 The diagram shows the solution of an equation as traced out by the point P(z). The path traced out by the point P representing the complex number z is three-quarter circle.

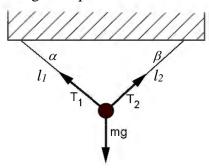


Which of the following could be the equation?

(A)
$$Arg(z-\alpha) - Arg(z-\beta) = 0$$

- (B) $Arg(z-\alpha) Arg(z-\beta) = \frac{\pi}{4}$
- (C) $Arg(z-\alpha) Arg(z-\beta) = \frac{\pi}{2}$
- (D) $Arg(z-\beta) Arg(z-\alpha) = \frac{\pi}{4}$

10. The mass m kg is suspended from the ceiling by two light strings of equal length, where the tensions in each string are equal.



If the lengths of the strings are changed such that $l_1 > l_2$, and the angles made by the strings to the horizontal are α and β respectively, which of the following will now be true?

- (A) $\alpha > \beta, T_1 > T_2$
- (B) $\alpha > \beta, T_2 > T_1$
- (C) $\alpha < \beta, T_2 > T_1$
- (D) $\alpha < \beta, T_1 > T_2$

End of Section I

Section II

90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section.

Answer each question in a new writing booklet. Extra writing booklets are available.

In Questions 11 – 16, your responses should include relevant mathematical reasoning and/or calculations.

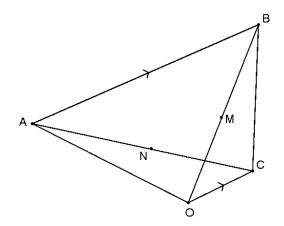
Question 11 (15 marks) Start a new writing booklet. Let w=8-2i and z=-5+3i. Find w+z(a) 1 Show that $(1-2i)^2 = -3-4i$ (b) (i) 1 Hence solve the equation $z^2 - 5z + (7+i) = 0$ (ii) 3 (i) Find $\frac{d}{dx}(x\sin^{-1}x)$ 1 (c) Hence or otherwise find $\int \sin^{-1}(x) dx$ (ii) 2 Provide a non-inductive proof as to why $12^n > 5^n + 7^n$, \forall integers $n \ge 2$. 2 (d) Use the result $e^{in\theta} = \cos n\theta + i \sin n\theta$ to show $e^{ni\theta} + e^{-ni\theta} = 2\cos n\theta$ (i) 1 (e) By expanding $(e^{i\theta} + e^{-i\theta})^4$, prove that $\cos^4 \theta = \frac{1}{8}\cos 4\theta + \frac{1}{2}\cos 2\theta + \frac{3}{8}$ (ii) 2 Hence find $\int_{0}^{\frac{\pi}{2}} \cos^4 \theta d\theta$ 2 (iii)

End of Question 11.

QUESTION 12 (15 marks)

(a) *OABC* is a trapezium with $\overrightarrow{AB} = k\overrightarrow{OC}$. Let $\underline{a} = \overrightarrow{OA}$ and $\underline{c} = \overrightarrow{OC}$.

M and N are midpoints of OB and AC respectively.



(i)	Find \overrightarrow{OM} in terms of \underline{a} and \underline{c} .	2
(ii)	Find \overrightarrow{ON} in terms of a_{z} and c_{z} .	2
(iii)	Hence find MN in terms of \underline{a} and \underline{c} .	1
(iv)	Deduce the value of k required for ABMN to be a parallelogram.	2

(b) (i) Express
$$\frac{x^2+1}{(x-1)(x^2+x+1)} \equiv \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$$
. 2

(ii) Hence find
$$\int \frac{x^2 + 1}{(x-1)(x^2 + x + 1)} dx$$
 3

3

(c) Prove using contradiction that $\log_2 5$ is an irrational number.

(a) Consider a sphere S, with centre C(2, -1, 0) and radius $\sqrt{29}$ units. Consider also the line l with parametric equations

$$\xi + \zeta = z$$
, $\lambda = \chi$, $\mathbf{l} + \lambda = x$

(i) Find the vector equation of line *l*, writing your answer in the form $\tilde{t} = \tilde{a} + \lambda \tilde{b}$, where \tilde{a} and \tilde{b} are expressed as column vectors.

It is also known that l intersects the surface of S at points P and Q

- (ii) Find the coordinates of points P and Q.
 (iii) Hence or otherwise, determine whether PQ is a diameter of S,
 1
- (III) HENCE OF ONDERWISE, DECEMBIE WIEMER PO IS & DIAMERER OF S., showing necessary working.
- (b) The displacement, x metres, of a particle P from the origin O at time t seconds is given by

$$(51) = 9\cos(5t + \frac{1}{2t}) + \cos(5t)$$

E

E

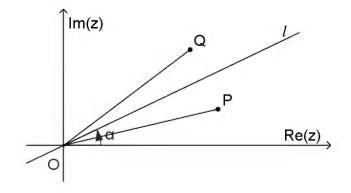
- O the notion of the number of
- (ii) Find the amplitude of this motion, correct to 1 decimal place.

(c) Using Trigonometric substitution, or otherwise, find $\int \frac{1}{\sqrt{(1-x^2)^3}} dx$. Give your answer without trigonometric functions.

End of Question 13

QUESTION 14 (15 marks)

(a) Let *l* be the line in the complex plane that passes through the origin and makes an angle α with the positive real axis, where $0 < \alpha < \frac{\pi}{2}$.



The point *P* represents the complex number z_1 , where $0 < \arg(z_1) < \alpha$. The point *P* is reflected in the line *l* to produce the point *Q*, which represents the complex number z_2 . Hence $|z_1| = |z_2|$.

(i) Explain why
$$\arg(z_1) + \arg(z_2) = 2\alpha$$
. 2

(ii) Deduce that
$$z_1 z_2 = |z_1|^2 (\cos 2\alpha + i \sin 2\alpha)$$
. 1

(iii) Let $\alpha = \frac{\pi}{4}$ and let *R* be the point that represents the complex number $z_1 z_2$. **1** Describe the locus of *R* as z_1 varies.

(b) If a, b and c are real and unequal and that $a^2 + b^2 > 2ab$ deduce that

(i)
$$a^2 + b^2 + c^2 > ab + bc + ac.$$
 1

(ii) If a+b+c=6 show that ab+bc+ac<12. 2

Question 14 continues over the page

(c) Use the substitution of
$$t = \tan \frac{x}{2}$$
, find $\int \frac{1}{3 - \cos x - 2\sin x} dx$ 3

(d) A particle, initially at x = 2, has a velocity given by $v = \sqrt{16 - 3x^2}$. Find the **3** expression of x in terms of t.

2

(e) If the displacement of an object at any time *t* is given by the vector equation

$$\underline{r} = \begin{bmatrix} 10\cos t \\ 10\sin t \\ 15-t \end{bmatrix}$$

Find the vector equation of the velocity and its initial speed.

End of Question 14

Question 15 (15 marks) Start a new writing booklet.

- Consider the equation $z^5 + 1 = 0$, where z is a complex number. (a)
 - Solve the equation $z^5 + 1 = 0$ by finding the 5th roots of -1. (i) 2
 - Show that if z is a solution of $z^5 + 1 = 0$ and $z \neq 1$, then $u = z + \frac{1}{z}$ (ii) 2 is a solution of $u^2 - u - 1 = 0$.
 - Hence find the exact value of $\cos \frac{3\pi}{5}$. (iii) 3
- Consider the polynomial equation (b)

$$x^4 + ax^3 + bx^2 + cx + d = 0$$

Where a, b, c and d are all integers.

Suppose also that the equation has a root of the form ki, where k is real, and $k \neq 0$.

(i)	State why the conjugate, $-ki$ is also a root.	1
(ii)	Show that $c = k^2 a$.	2

3

- Show that $c^2 + a^2 d = abc$. (iii) 2
- (iv) If 2 is also a root of the equation, and b=0, show that c is even.

End of Question 15

QUESTION 16 (15 marks)

(a) Consider the recurrence relation defined by $T_1 = 1$ and

$$T_{n+1} = \frac{4+T_n}{1+T_n}$$
, for $n = 1, 2, 3, ...$

(i) Prove by mathematical induction that for $n \ge 1$,

$$T_n = 2 \left\lfloor \frac{1 + (-3)^{-n}}{1 - (-3)^{-n}} \right\rfloor.$$

(ii) Hence find the limit value of T_n as $n \to \infty$.

(b) Let
$$I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx$$
 and let $J_n = (-1)^n I_{2n}$

(i) Show that
$$I_n + I_{n+2} = \frac{1}{n+1}$$
. 2

(ii) Find the value of
$$I_4 = \int_0^{\frac{\pi}{4}} \tan^4 x \, dx$$
 2

(iii) Deduce that
$$J_n - J_{n-1} = \frac{(-1)^n}{2n-1}$$
 for $n \ge 1$. 1

(iii) By considering

$$J_m = (J_m - J_{m-1}) + (J_{m-1} - J_{m-2}) + (J_{m-2} - J_{m-3}) + \dots + (J_1 - J_0) + J_0$$
2

Show that

$$J_m = \frac{\pi}{4} + \sum_{n=1}^m \frac{(-1)^n}{2n-1}$$
 for $n \ge 1$.

(v) Use substitution
$$u = \tan x$$
 to show that $I_n = \int_0^1 \frac{u^n}{1+u^2} du$. 1

(vi) Deduce that
$$0 \le I_n \le \frac{1}{n+1}$$
 and conclude that $J_n \to 0$ as $n \to \infty$. 2

End of Examination

4

1

Question	Answers
1	С
2	В
3	С
4	D
5	Α
6	В
7	D
8	D
9	В
10	С

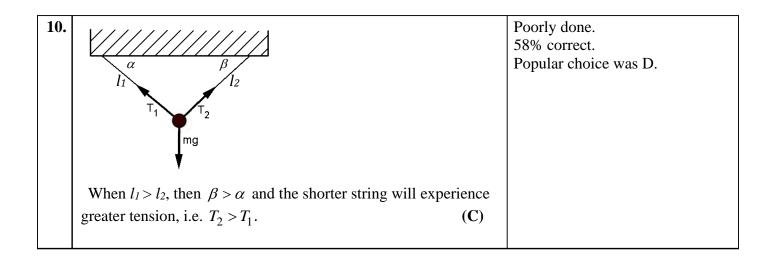
Section I Multiple Choice

1.	$\int \frac{-1}{\sqrt{1 - 16x^2}} dx = \frac{1}{4} \int \frac{-1}{\sqrt{\frac{1}{16} - x^2}} dx$ $= \frac{1}{4} \cos^{-1} \frac{x}{\left(\frac{1}{4}\right)} + C$ $= \frac{1}{4} \cos^{-1} 4x + C $ (C)	90% correct.
2.	$(\underline{b}-\underline{a}) = \lambda(\underline{c}-\underline{a}) \text{ has more information than } \overrightarrow{AB} \parallel \overrightarrow{AC} .$ $\overrightarrow{A} \longrightarrow \overrightarrow{B} \longrightarrow \overrightarrow{C}$ Point <i>B</i> is diving the interval <i>AC</i> in the ratio of $\lambda: (1-\lambda)$ internally. (B)	61% correct. Popular choice was A. Question required false statement. Upon reflection we will allow (c) as well as a correct answer
3.	(a) \forall means" for all " $a = 30^{\circ} b = 150^{\circ}$ not true (b) \forall means" for all " $a = 5 b = -3$ not true (c) \exists means" there exists " $a = 2 b = 2$ is true (d) \exists means" there exists " $ a+b > a + b $ not true as $ a + b \ge a+b $ by \triangle inequality $\forall \mathbb{C}$ (C)	74% correct. Popular choice was D. Third side of a triangle is less than the sum of the two sides.

4.	$\int x \tan^{-1} x dx = uv - \int u$	$u'v dx$ where $u = \tan^{-1} x$ $v' = x$	100% correct.
	•	$u' = \frac{1}{1+x^2}$ $v = \frac{x^2}{2}$	
	_	$x^{-1}x - \frac{1}{2}\int \frac{x^2}{1+x^2} dx$	
	$=\frac{x^2}{2}\tan^{-1}$		
	$=\frac{x^2}{2}\tan^{-1}$	$\frac{1}{2}x - \frac{1}{2}\int \frac{x^2 + 1}{1 + x^2} - \frac{1}{1 + x^2} dx$	
	$=\frac{x^2}{2}\tan^{-1}$	$\frac{1}{2}x - \frac{1}{2}\int 1 - \frac{1}{1 + x^2}dx$	
		$x - \frac{1}{2}(x - \tan^{-1}x) + C$	
	$=\frac{x^2}{2}\tan^{-1}$	$x - \frac{1}{2}x + \frac{1}{2}\tan^{-1}x + C$ (D)	
5.	1		87% correct.
	w	-iW	Popular choice was D.
		Zbar-Iw	
		z	
		Z bar	
		Therefore Quadrant 1 Option (A)	
	₩.	(A)	

6.	Original statement: 'For any function $f(x)$, $f(x)$ is not continuous at $x = a \Rightarrow$ f(x) is not differentiable at $x = a$.' Converse: For any function $f(x)$, $f(x)$ is not differentiable at $x = a \Rightarrow$	68% correct. Popular choice was D.
	f(x) is not continuous at $x = a$.' False. Contrapositive: For any function $f(x)$, $f(x)$ is differentiable at $x = a \Rightarrow$ f(x) is continuous at $x = a$.' True. (B)	
7.	$\begin{aligned} \overline{ OA } &= \sqrt{4+1+9} = \sqrt{14} \\ \text{As } \overline{OA}.\overline{OB} = \overline{OA} . \overline{OB} \cos\theta \text{ then } 6 = \sqrt{14} \times 3 \times \cos\theta \\ \therefore \cos\theta &= \frac{2}{\sqrt{14}} \\ \text{Since } \overline{OA}.\overline{OB} > 0 \text{ and } \theta \text{ is in a triangle, then } \theta \text{ is acute.} \\ \text{Using the triangle, } \sin\theta &= \frac{\sqrt{10}}{\sqrt{14}} \\ \therefore Area &= \frac{1}{2} \times 3 \times \sqrt{14} \times \frac{\sqrt{10}}{\sqrt{14}} \\ &= \frac{3\sqrt{10}}{2} \end{aligned}$	81% correct. Popular choice was B.

= = = I = 2I =	$\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$ $\int_{0}^{\pi} \frac{(\pi - x) \sin(\pi - x)}{1 + \cos^{2}(\pi - x)} dx$ $\int_{0}^{\pi} \frac{\pi \sin(\pi - x)}{1 + \cos^{2}(\pi - x)} - \frac{x \sin(\pi - x)}{1 + \cos^{2}(\pi - x)} dx$ $\int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^{2} x} - \frac{x \sin x}{1 + \cos^{2} x} dx$ $\int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^{2} x} dx - \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$ $\pi \int_{0}^{\pi} \frac{\sin x}{1 + \cos^{2} x} dx - I$ $= \pi \left(\frac{\pi}{2}\right)$ $= \frac{\pi^{2}}{2}$	(D)	Poorly done. 48% correct. Popular choice was C. Students forgotten it was 2 <i>I</i> that equals $\frac{\pi^2}{2}$.
meet at t must be $\frac{1}{2}$ half the a arc. OR z = a rep $z = \beta$ rep Using the angle at z So, Arg(The circumference of a circle, radii from α and β the circumference of a circle, radii from α and β the centre at $\frac{\pi}{2}$ radians. This means the angle at z $\frac{\pi}{4}$ radians as the angle at the circumference is ingle at the centre when subtended by the same the sents the vector from α to z. The sents the vector from β to z.	(B)	100% correct.



2
\mathbf{Z}
0
Ξ
ະ
Ξ.
\mathbf{v}

Well done	Well done	Well done	Well done	Mostly well done
(a) $w + \overline{z} = 8 - 2i + (-5 - 3i)$ (1) = 3 - 5i	(b)(i) (1-2i) ² = 1-4i - 4 = -3-4i	(b)(ii) $z = \frac{5 \pm \sqrt{(-5)^2 - 4.1.(7+i)}}{2.1}$ $= \frac{5 \pm \sqrt{25 - 4(7+i)}}{2}$ $= \frac{5 \pm \sqrt{-3 + 4i}}{2}, from(i)$ $= \frac{5 \pm \sqrt{(1-2i)^2}}{2}, from(i)$ $= 3 - i, 2 + i$	(c)(i) $\frac{d}{dx}(x\sin^{-1}x) = x \cdot \frac{1}{\sqrt{1-x^2}} + \sin^{-1}x \cdot 1$ $= \frac{x}{\sqrt{1-x^2}} + \sin^{-1}x$ (D)	(c)(ii) $\int \frac{d}{dx} (x \sin^{-1} x) dx = \int \frac{x}{\sqrt{1 - x^2}} dx + \int \sin^{-1}(x) dx$ $\therefore \int \sin^{-1}(x) dx = \int \frac{d}{dx} (x \sin^{-1} x) dx - \int \frac{x}{\sqrt{1 - x^2}} dx \mathbf{O}$ $= x \sin^{-1} x + \sqrt{1 - x^2} + C$
11.	11.	ii ii	11.	11.

11. (d)	
d) $12^n = (5+7)^n$	Mostly well done
$=\binom{n}{0}5^{n}+\binom{n}{1}5^{n-1}\times7+\binom{n}{2}5^{n-2}\times7^{2}+$	
$\dots + \binom{n}{n-1} \times 5 \times 7^{n-1} + \binom{n}{n} 7^n$	
As $\binom{n}{0} = \binom{n}{n} = 1$ then	
$(5+7)^n = 5^n + {n \choose 1} 5^{n-1} \times 7 + {n \choose 2} 5^{n-2} \times 7^2 +$	
$\dots + \binom{n}{n-1} \times 5 \times 7^{n-1} + 7^n$	
Since $\binom{n}{1} 5^{n-1} \times 7 + \binom{n}{2} 5^{n-2} \times 7^2 + \frac{n}{2} + $	
(1) (2)	
$\dots + \binom{n}{n-1} \times 5 \times 7^{n-1}$ is a sum of positive terms 1	
then $(5+7)^n = 5^n + 7^n + Sum of positive terms$. This	
indicates that $(5+7)^n > 5^n + 7^n$; that is, $12^n > 5^n + 7^n$ for all integers $n \ge 2$.	
$12^{n} > 5^{n} + 7^{n}$ for an integers $n \ge 2$.	
11. (e)(i)	well done
$e^{in\theta} + e^{-in\theta} = \left[\cos(n\theta) + i\sin(n\theta)\right] + \left[\cos(-n\theta) + i\sin(-n\theta)\right]$	
$= \cos(n\theta) + i\sin(n\theta) + \cos(n\theta) - i\sin(n\theta) $ (1)	
$=2\cos(n\theta)$	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11. (e)(11)	well done
$(e^{i\theta} + e^{-i\theta})^4 = e^{i4\theta} + 4e^{i2\theta} + 6 + 4 + 4e^{-i2\theta} + e^{-i4\theta}$	
$= (e^{i4\theta} + e^{-i4\theta}) + 4(e^{i2\theta} + e^{-i2\theta}) + 6$	
$\therefore (2\cos\theta)^4 = 2\cos 4\theta + 4(2\cos 2\theta) + 6 \qquad (1)$	
$\therefore 16\cos^4\theta = 2\cos 4\theta + 8\cos 2\theta + 6$	
$\therefore \cos^4 \theta = \frac{1}{8} \cos 4\theta + \frac{1}{2} \cos 2\theta + \frac{3}{8}$	

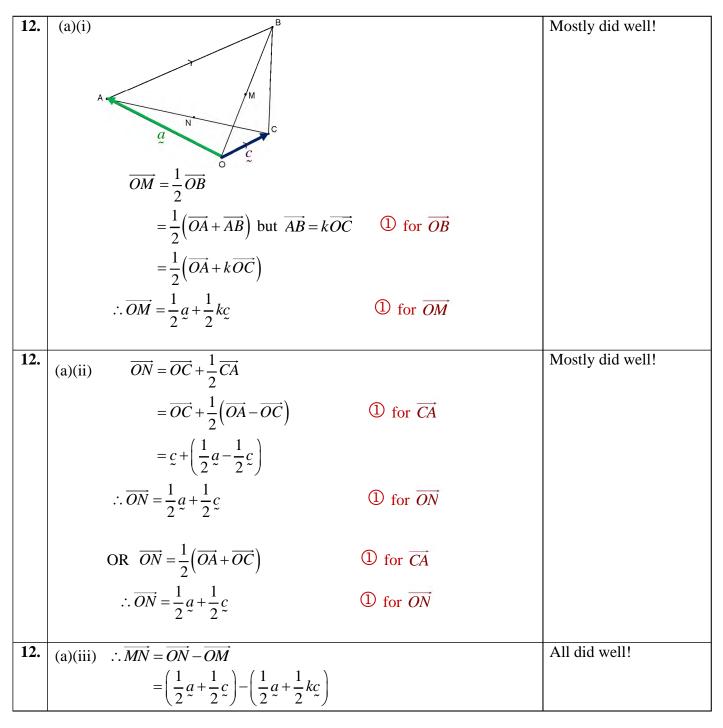
11. (e)(iii)

$$\int_{0}^{\frac{\pi}{2}} \cos^{4} \theta d\theta = \int_{0}^{\frac{\pi}{2}} (\frac{1}{8} \cos 4\theta + \frac{1}{2} \cos 2\theta + \frac{3}{8}) d\theta$$

$$= \left[\frac{1}{32} \sin 4\theta + \frac{1}{4} \sin 2\theta + \frac{3\theta}{8} \right]_{0}^{\frac{\pi}{2}}$$

$$= \left[\frac{1}{32} \sin 4\left(\frac{\pi}{2}\right) + \frac{1}{4} \sin 2\left(\frac{\pi}{2}\right) + \frac{3\left(\frac{\pi}{2}\right)}{8} \right] - \left[\frac{1}{32} \sin 4(0) + \frac{1}{4} \sin 2(0) + \frac{3(0)}{8} \right]$$

$$= \frac{3\pi}{16}$$
(1)



2027	TRIAL EXAMINATION FOR EXTENSION 2	
	$=\frac{1}{2}c - \frac{1}{2}kc$	
	$\therefore \overrightarrow{MN} = \frac{1}{2} c(1-k) \qquad \qquad \textbf{1} \text{ for } \overrightarrow{MN}$	
12.	(a)(iv) For ABMN to be a parallelogram, $\overrightarrow{MN} = \overrightarrow{BA}$ (1) $\frac{1}{2}c(1-k) = -kc$	Not as well executed.Students who paidattention to direction ofvectors get the correct
	$\frac{1}{2}(1-k) = -k$ $1-k = -2k$ $1-k = 2k$ $1 = -k$	answers.
	k = -1 ① for k	
	OR For <i>ABMN</i> to be a parallelogram, such that $\left \overrightarrow{MN} \right = \left -\overrightarrow{AB} \right $ 1	
	$\left \frac{1}{2}c(1-k)\right = k\left -c\right $	
	$\frac{1}{2} (1-k) _{\mathcal{L}} = k -c \text{ since } 1-k < 0, \ k > \\ \therefore (1-k) = k-1$	1
	$\frac{1}{2}(k-1) = k$	
	k - 1 = 2k $-1 = k$	
	$\therefore k = -1$ ① for k	
12.	(b)(i) $\frac{x^2+1}{(x-1)(x^2+x+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$	Mostly did well! A few arithmetic calculation error. A few students did not
	$x^{2} + 1 \equiv A(x^{2} + x + 1) + (Bx + C)(x - 1)$ When $x = 1$, $(1)^{2} + 1 \equiv A((1)^{2} + (1) + 1) + 0$	answer as required in $x^2 + 1$
	2=3A	$\overline{(x-1)(x^2+x+1)}$
	$A = \frac{2}{3}$	$\equiv \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$ form.
	When $x = 0$, $(0)^2 + 1 \equiv \frac{2}{3} ((0)^2 + (0) + 1) + (B(0) + C) ((0)^2 + (0$	()-1)
	$C = \frac{2}{3} - 1$	
	$C = -\frac{1}{3}$	

2024	TRIAL EXAMINATION FOR EXTENSION 2	
	When $x = 2$, $(2)^2 + 1 = \frac{2}{3}((2)^2 + (2) + 1) + (B(2) - \frac{1}{3})((2) - 1)$	
	$5 = \frac{14}{3} + 2B - \frac{1}{3}$	
	$5 = \frac{13}{3} + 2B$	
	$2B = \frac{2}{3}$	
	$B = \frac{1}{3}$	
	$\therefore \frac{x^2 + 1}{(x-1)(x^2 + x + 1)} = \frac{\frac{2}{3}}{x-1} + \frac{\frac{1}{3}x - \frac{1}{3}}{x^2 + x + 1} $ (1) (1)	
12.	(b)(ii) $\int \frac{x^2 + 1}{(x-1)(x^2 + x + 1)} dx$	
	$= \int \frac{\frac{2}{3}}{x-1} + \frac{\frac{1}{3}x - \frac{1}{3}}{x^2 + x + 1} dx$	
	$= \int \frac{\frac{2}{3}}{x-1} dx + \int \frac{\frac{1}{3}x - \frac{1}{3}}{x^2 + x + 1} dx$	
	$=\frac{2}{3}\int \frac{1}{x-1} dx + \frac{1}{3}\int \frac{x-1}{x^2+x+1} dx$ (1)	
	$=\frac{2}{3}\ln x-1 + \frac{1}{2}\left(\frac{1}{3}\right)\int \frac{2x-2}{x^2+x+1} dx$	
	$=\frac{2}{3}\ln x-1 + \frac{1}{6}\int \frac{2x+1-2-1}{x^2+x+1} dx$	
	$=\frac{2}{3}\ln x-1 + \frac{1}{6}\int \frac{2x+1}{x^2+x+1} - \frac{3}{x^2+x+1} dx$	
	$=\frac{2}{3}\ln x-1 + \frac{1}{6}\int\frac{2x+1}{x^2+x+1} dx - \frac{3}{6}\int\frac{1}{x^2+x+1} dx$	
	$=\frac{2}{3}\ln x-1 + \frac{1}{6}\ln(x^2 + x + 1) - \frac{1}{2}\int\frac{1}{x^2 + x + 1} dx$	
	$=\frac{2}{3}\ln x-1 + \frac{1}{6}\ln(x^2 + x + 1) - \frac{1}{2}\int\frac{1}{x^2 + x + (\frac{1}{2})^2 + 1 - \frac{1}{4}} dx$	
	$=\frac{2}{3}\ln x-1 + \frac{1}{6}\ln(x^2 + x + 1) - \frac{1}{2}\int\frac{1}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} dx$	

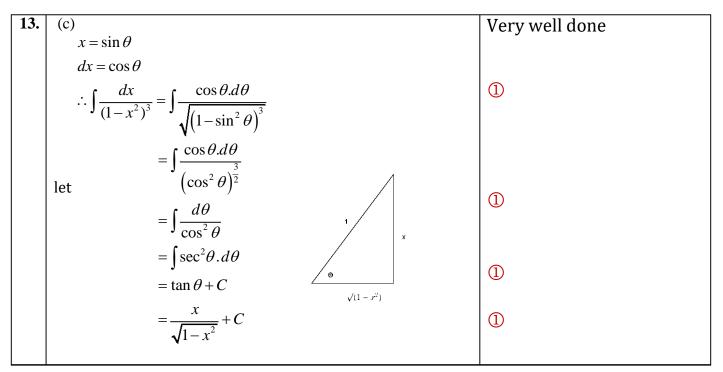
2024	TRIAL EXAMINATION FOR EXTENSION 2
	$=\frac{2}{3}\ln x-1 + \frac{1}{6}\ln(x^2 + x + 1) - \frac{1}{2}\left(\frac{2}{\sqrt{3}}\right)\int \frac{1 \times \frac{\sqrt{3}}{2}}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} dx$
	$=\frac{2}{3}\ln x-1 + \frac{1}{6}\ln(x^{2} + x + 1) - \frac{1}{\sqrt{3}}\tan^{-1}\frac{\left(x + \frac{1}{2}\right)}{\frac{\sqrt{3}}{2}} + C$
	$=\frac{2}{3}\ln x-1 + \frac{1}{6}\ln(x^{2} + x + 1) - \frac{1}{\sqrt{3}}\tan^{-1}\frac{2}{\sqrt{3}}\left(x + \frac{1}{2}\right) + C$ 1
	$=\frac{2}{3}\ln x-1 + \frac{1}{6}\ln(x^2 + x + 1) - \frac{1}{\sqrt{3}}\tan^{-1}\frac{2x+1}{\sqrt{3}} + C$
12.	(c) Assume that there exists $p, q \in N$ such that
	$\log_2 5 = \frac{p}{q}$ and the highest common factor of p and q is
	1. ①
	$5 = 2^{\frac{p}{q}}$
	$\left(5\right)^q = \left(2^{\frac{p}{q}}\right)^q$
	$\therefore 5^q = 2^p$
	But LHS = 5^q
	$=5 \times 5 \times 5 \times \dots$ i.e. 5 is a factor of 5^q but not
	2^p
	and RHS $= 2^p$
	$=2\times2\times2\times$ i.e. 2 is a factor of 2^p but not
	5^q (1)
	Then no p and q such that $p, q \in N$ satisfies the equation
	$5^q = 2^p$ and this equation must be a contradiction. So
	$\log_2 5$ is an irrational number. (1)

13. (a)(i)

$$\begin{aligned}
y &= \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \lambda+1 \\ \lambda \\ 2\lambda+3 \end{pmatrix} \\
&= \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}
\end{aligned}$$
well done

10		
	(a)(ii) Equation of sphere	Mostly well done
	$\left \frac{2}{r} - \begin{pmatrix} 2\\ -1\\ 0 \end{pmatrix} \right = \sqrt{29}$	
	$\left \begin{array}{c} r \\ r \end{array} \right = \sqrt{29}$	
	$ \begin{vmatrix} 1 \\ 1 \end{vmatrix} $	
	$ \begin{vmatrix} 1\\0\\3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\1\\2 \end{pmatrix} - \begin{pmatrix} 2\\-1\\0 \end{pmatrix} = \sqrt{29} $	1
	$\begin{vmatrix} 0 \\ +\lambda \\ 1 \\ - \end{vmatrix} - \begin{vmatrix} -1 \\ -1 \end{vmatrix} = \sqrt{29}$	
	$ \left[\begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \right] $	
	(1) (-1)	
	$\begin{vmatrix} \lambda \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} = \sqrt{29}$	
	$\begin{bmatrix} \lambda & 1 & \top & 1 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} -\sqrt{29} \end{bmatrix}$	
	$\left[\begin{array}{c} 2 \end{array} \right] \left[\begin{array}{c} 3 \end{array} \right]$	
	$\therefore (\lambda - 1)^{2} + (\lambda + 1)^{2} + (2\lambda + 3)^{2} = 29$	
	$\therefore 6\lambda^2 + 12\lambda - 18 = 0$	
	$\therefore \lambda^2 + 2\lambda - 3 = 0$	
	$\therefore (\lambda + 3)(\lambda - 1) = 0$	1
	$\therefore \lambda = -3,1$	
	$\lambda = -3: P = (1-3, 0-3, 3-6) = (-2, -3, -3)$	
	$\lambda = 1: Q = (1+1, 0+1, 3+2) = (2, 1, 5)$	1
13.	(a)(iii)	Well done
	$PQ = \sqrt{(-2-2)^2 + (-3-1)^2 + (-3-5)^2}$	
	$=\sqrt{16+16+64}$	
	$=\sqrt{96}$	
	$=2\sqrt{24}$	
	$\neq 2\sqrt{29}$	
	Where $\sqrt{29}$ is the radius $\therefore PQ$ is not the diameter of the	
	sphere.	
	ophotoi	

13.	(b)(i)	
	$x = 6\cos(2t + \frac{\pi}{4}) + \cos(2t)$	Mostly well done
	$\dot{x} = -12\sin(2t + \frac{\pi}{4}) - 2\sin(2t)$	
	$\ddot{x} = -24\cos(2t + \frac{\pi}{4}) - 4\cos(2t)$	1
	$= -4\left[6\cos(2t + \frac{\pi}{4}) + \cos(2t)\right]$	1
	$\ddot{x} = -4x$	
	$\ddot{x} = -n^2 x$	1
	Which is SHM about $c = 0$ and $n = 2$ \therefore period $= \frac{2\pi}{2} = \pi$	
13.	(b)(ii) $x = 6\cos(2t + \frac{\pi}{4}) + \cos(2t)$	Quite a few students did not realise that the amplitude could be found by simply
	$= 6 \left[\cos(2t)\cos\frac{\pi}{4} - \sin(2t)\sin\frac{\pi}{4} \right] + \cos(2t)$	① finding the coefficient of the distance equation by using the transformation/auxiliary angle
	$=\frac{6\sqrt{2}}{2}\left[\cos(2t)-\sin(2t)\right]+\cos(2t)$	formula. This was a lot easier than finding when the velocity
	$= (3\sqrt{2} + 1)\cos(2t) - 3\sqrt{2}\sin(2t)$	(1) was zero and substituting
	= $R\cos(2t + \alpha)$ where $R = \sqrt{(3\sqrt{2} + 1)^2 + (3\sqrt{2})^2}$	back t into x.
	$=\sqrt{6\sqrt{2}+37}$	
	= 6.744	
	$\therefore amplitude = 6.7 (1d.p)$	1



	↑	
14.	(a)(i) $rac{l}{z_2}$ $rac{l}{z_1}$ $rac{l}{z_2}$ $rac{l}{$	Mostly did well!
14.	(a)(ii) $ z_1 z_2 = z_1 z_2 $ and since $ z_1 = z_2 $	
	$\therefore z_1 z_2 = z_1 ^2$	
	$\operatorname{org}(z, z) = \operatorname{org}(z) + \operatorname{org}(z)$	
	$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$	
	$\arg(z_1 z_2) = 2\alpha$ [from part (i)]	
	$\therefore z_1 z_2 = z_1 ^2 (\cos 2\alpha + i \sin 2\alpha). \text{ (as required)} \textcircled{1}$	
14.	(a)(iii) When $\alpha = \frac{\pi}{4}$, $z_1 z_2 = z_1 ^2 \left(\cos 2\left(\frac{\pi}{4}\right) + i \sin 2\left(\frac{\pi}{4}\right) \right)$ (1)	Many have problem with the locus of R.
		Few students answered partially
	$=\left z_{1}\right ^{2}\left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)$	correct not taking into account
	$z_1 z_2 = z_1 ^2 i$.	that $ z_1 ^2$ will only give positive
		values and forget that <i>O</i> should be excluded.
	$ z_1 \neq 0$ otherwise $\arg(z_1)$ is undefined. (So the locus of <i>R</i> is dependent on $ z_1 $). Hence the locus of <i>R</i> is the	
	<i>R</i> is dependent on $ z_1 $). Hence the locus of <i>R</i> is the	
	positive <i>y</i> – axis, excluding the origin, of length $ z_1 ^2$ ①	
14.	(b)(i) $a^2 + b^2 > 2ab$ — ①	All did well.
	$b^2 + c^2 > 2bc \qquad - \bigcirc$	
	$a^2 + c^2 > 2ac$ — 3	
	$ (1) + (2) + (3) + (2a^{2} + 2b^{2} + 2c^{2} > 2ab + 2bc + 2ac $	
	$2\left(a^2+b^2+c^2\right) > 2\left(ab+bc+ac\right)$	
	$\therefore a^2 + b^2 + c^2 > ab + bc + ac \text{ (as required)}$	

2024	TRIAL EXAMINATION FOR EXTENSION 2	
14.	(b)(ii) Since $a+b+c=6$	Mostly did well.
	$\left(a+b+c\right)^2 = \left(6\right)^2$	
	$\left(a+b+c\right)^2 = 36$	
	$\left[\left(a+b\right)+c\right]^2=36$	
	$(a+b)^2 + 2(a+b)c + c^2 = 36$	
	$a^2 + 2ab + b^2 + 2ac + 2bc + c^2 = 36$	
	$(a^2+b^2+c^2)+2ab+2ac+2bc=36$ — ④ ①	
	And from (i) $a^{2} + b^{2} + c^{2} > ab + bc + ac$	
	$a^{2}+b^{2}+c^{2}+2(ab+bc+ac) > ab+bc+ac+2(ab+bc+ac)$	
	$a^{2}+b^{2}+c^{2}+2(ab+bc+ac) > 3(ab+bc+ac) - \mathbb{S}$	
	Sub ④ into ⑤ $36 > 3(ab+bc+ac)$	
	$\therefore ab + bc + ac < 12 $	
14.		Mostly did well.
	(c) $\int \frac{1}{3 - \cos x - 2\sin x} dx$ Let $t = \tan \frac{x}{2}$	Some errors were:
	$\frac{x}{2} = \tan^{-1} t$	1) answer in term of <i>t</i> and not <i>x</i> .
	$\frac{2}{x = 2 \tan^{-1} t}$	2) forgotten the existence of the first term 3 when working out
		the equivalent fraction with
	$\frac{dx}{dt} = \frac{2}{1+t^2}$	denominator $1+t^2$.
	$dx = \frac{2}{1+t^2} dt$	3) was stuck with working out 2
	$\mathbf{I} + \mathbf{V}$	$\int \frac{2}{4t^2 - 4t + 2} dt$
	And $\cos x = \frac{1 - t^2}{1 + t^2}$	
	$\sin x = \frac{2t}{1+t^2}$	
	$= \int \frac{1}{3 - \frac{1 - t^2}{1 + t^2} - 2\left(\frac{2t}{1 + t^2}\right)} \left(\frac{2}{1 + t^2}\right) dt $ (1)	
	$= \int \frac{1}{\frac{3(1+t^2) - (1-t^2) - 2(2t)}{1+t^2}} \left(\frac{2}{1+t^2}\right) dt$	
	$1+t^2$	
	$= \int \frac{1+t^2}{3(1+t^2) - (1-t^2) - 2(2t)} \left(\frac{2}{1+t^2}\right) dt$	
	$= \int \frac{1+t^2}{3+3t^2-1+t^2-4t} \left(\frac{2}{1+t^2}\right) dt$	
	$= \int \frac{2}{4t^2 - 4t + 2} dt$ (1)	

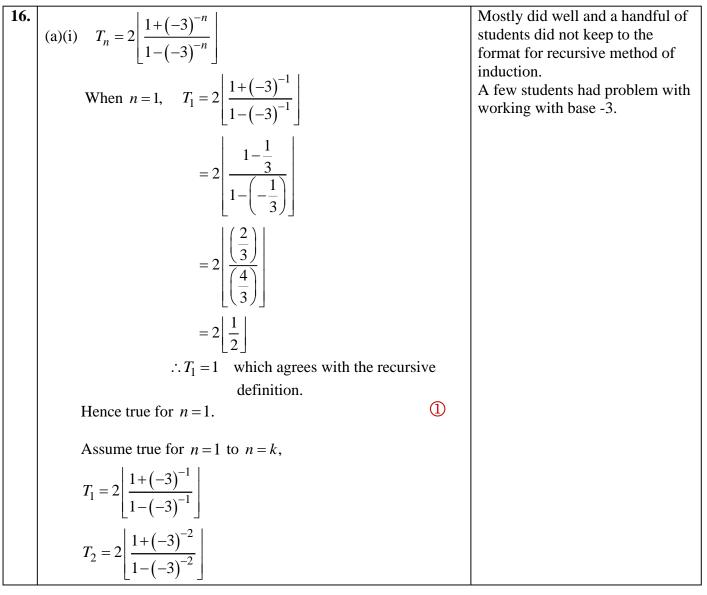
	$= \int \frac{2}{\left(4t^2 - 4t + 1\right) + 2 - 1} dt$		
	$=\int \frac{2}{(2t-1)^2+1} dt$ i.e. $f(x) = 2x-1$ and $a=1$		
	f'(x) = 2		
	$= \tan^{-1}(2t-1) + C$		
	$=\tan^{-1}\left(2\tan\frac{x}{2}-1\right)+C$	1	
14.	(d) $v = \sqrt{16 - 3x^2}$		Mostly did well especially using
	$\frac{dx}{dt} = \sqrt{16 - 3x^2}$		the boundaries.
	$\frac{1}{\sqrt{16-3x^2}} dx = dt$		
	$\int_{2}^{x} \frac{1}{\sqrt{16 - 3x^2}} dx = \int_{0}^{t} dt$	1	
	$\int_{2}^{x} \frac{1}{\sqrt{(4)^{2} - (\sqrt{3}x)^{2}}} dx = [t]_{0}^{t}$		
	$\frac{1}{\sqrt{3}} \int_{2}^{x} \frac{\sqrt{3}}{\sqrt{(4)^{2} - (\sqrt{3}x)^{2}}} dx = t - 0$		
	$\frac{1}{\sqrt{3}} \left[\sin^{-1} \frac{\sqrt{3}x}{4} \right]_2^x = t$		
	$\sin^{-1}\frac{\sqrt{3}x}{4} - \sin^{-1}\frac{\sqrt{3}(2)}{4} = \sqrt{3}t$		
	$\sin^{-1}\frac{\sqrt{3}x}{4} - \sin^{-1}\frac{\sqrt{3}}{2} = \sqrt{3}t$		
	$\sin^{-1}\frac{\sqrt{3}x}{4} - \frac{\pi}{3} = \sqrt{3}t$	1	
	$\sin^{-1}\frac{\sqrt{3}x}{4} = \sqrt{3}t + \frac{\pi}{3}$		
	$\frac{\sqrt{3}x}{4} = \sin\left(\sqrt{3}t + \frac{\pi}{3}\right)$		
	$\therefore x = \frac{4}{\sqrt{3}} \sin\left(\sqrt{3}t + \frac{\pi}{3}\right)$	1	
14.	$10\cos t$		Mostly did well and a handful of students found the initial
	(e) $\tilde{r}(t) = \begin{bmatrix} 10\sin t \\ 15-t \end{bmatrix}$		velocity vector but forgot to calculate the speed.

2027	TRIAL EAAMIINATION FOR EATENSIO	12	
	$ -10\sin t $		
	$\therefore y(t) = \begin{vmatrix} -10\sin t \\ 10\cos t \\ -1 \end{vmatrix}$	1	
	1		
	$\left -10\sin\left(0 ight)\right $		
	$v(0) = \begin{vmatrix} -10\sin(0) \\ 10\cos(0) \\ -1 \end{vmatrix}$		
	0		
	$ \underline{v}(0) = \begin{vmatrix} 0 \\ 10 \\ -1 \end{vmatrix} $		
	$ y(0) = \sqrt{0^2 + (10)^2 + (-1)^2}$ $ y(0) = \sqrt{101} \text{ ms}^{-1}$		
	$ y(0) = \sqrt{101} \mathrm{ms}^{-1}$	1	

15.	(a)(i) $z^{5} + 1 = 0$ $\therefore z^{5} = -1 \Rightarrow e^{i(\pi + 2\pi n)} \text{ where } n \in \mathbb{Z}$ So $z = e^{i\left[\frac{(\pi + 2\pi n)}{5}\right]} \text{ where } n = 0, 1, -1, 2, -2.$ $\Rightarrow z = e^{\frac{i\pi}{5}}, e^{-\frac{i\pi}{5}}, e^{\frac{3i\pi}{5}}, e^{-\frac{3i\pi}{5}}, -1$	Mostly well done
15.	(a)(ii) $z^{5}+1=0$ $(z+1)(z^{4}-z^{3}+z^{2}-z+1)=0$ now $z \neq -1$ $\therefore z^{4}-z^{3}+z^{2}-z+1=0$ $\therefore \frac{z^{4}-z^{3}+z^{2}-z+1}{z^{2}}=0$ $\therefore z^{2}-z+1-\frac{1}{z}+\frac{1}{z^{2}}=0$ $\therefore z^{2}+2+\frac{1}{z^{2}}-(z+\frac{1}{z})-1=0$ $\therefore (z+\frac{1}{z})^{2}-(z+\frac{1}{z})-1=0$ sub $u = z + \frac{1}{z}$ $\therefore u^{2}-u-1=0$ as req.	Mostly well done ① ①

2024	TRIAL EXAMINATION FOR EXTENSION 2	
15.	(a)(iii) $u^{2} - u - 1 = 0$ $\therefore u = \frac{1 \pm \sqrt{5}}{2}$	Mostly well done Some students missed the correct quadrant and did (1) the + instead of the –
	$now \ u = z + \frac{1}{z}$ = $z + \overline{z}$ = $2 \operatorname{Re}(z)$ = $2 \cos \theta$ Hence $\cos \theta = \frac{u}{2} = \frac{1 \pm \sqrt{5}}{4}$ Now $\cos \frac{\pi}{5} > \cos \frac{3\pi}{5}$ (1st quad pos > 2nd quad neg) $\therefore \cos \frac{3\pi}{5} = \frac{1 - \sqrt{5}}{4}$	1
15.	(b)(i) If a complex number $a+ib$ where a,b are real, is a root of a polynomial equation with real coefficienta, then its complex conjugate is also a root of this equation. Since a,b,c,d are integer coefficients as stated, then the conjugate of $0+ki$, being $0-ki$ is also a root.	well done ①
15.	(b)(ii) Since $x = ki$ is a root of $x^4 + ax^3 + bx^2 + cx + d = 0$ Then $(ki)^4 + a(ki)^3 + b(ki)^2 + c(ki) + d = 0$ i.e. $k^4 - ak^3i - bk^2 + cki + d = 0$ i.e. $(k^4 - bk^2 + d) + i(ck - ak^3) = 0 + 0i$ $\therefore ck - ak^3 = 0 \Longrightarrow k(c - ak^2) = 0$ equating imag. parts $\therefore c = ak^2$ (as $k \ne 0$) as required.	Mostly well done. Some used a different method which was fine but led to problems as not knowing how to proceed correctly in parts (iii) and (iv) 1
	(b)(iii) From (ii) $k^4 - bk^2 + d = 0$ (equating real) and since $c = ak^2 \Rightarrow k^2 = \frac{c}{a}$ Then $\frac{(c)^2 - b(c)}{a} + d = 0$ $c^2 - abc + a^2 d = 0$ $\therefore c^2 + a^2 d = abc$ as req.	Mostly well done if used this method' ①
	(b)(iv) If $b = 0$, then from (iii) $c^2 + a^2 d = 0$ then $d = -(\frac{c}{a})^2$ and since <i>d</i> is integral, then <i>c</i> must be divisible by <i>a</i> , i.e $c = ap$ where <i>p</i> is integral.	Mostly well done if used this method. There is no guarantee that roots are integral in saying

Then $d = -\left(\frac{ap}{a}\right)^2 = -p^2$	①it is divisible by 2 which quite a few stated.
Also, the given equation $x^4 + ax^3 + bx^2 + cx + d = 0$ becomes	i.e α and β etc
Also, the given equation $x + ax + bx + cx + a = 0$ becomes 16+8a+2c+d=0 since 2 is a root.	
From $16+8a+2c+d=0 \Rightarrow d=-2(8+4a+c)$ hence d is even	
as it divisible by 2 and $8, 4, a, c$ are integral.	
Since d is even and $d = -p^2$, it follows p must be even and	
hence $p = 2q$: $d = -4q^2$	(1)
Now from $16+8a+2c+d=0$ we have $16+8a+2c-4q^2=0$	
That is $c = -2(q^2 - 4 - 2a)$ which is even as required as q, a are	
	\square
integral.	



$$T_{3} = 2 \left[\frac{1 + (-3)^{-3}}{1 - (-3)^{-3}} \right]$$

$$\vdots$$

$$T_{k-1} = 2 \left[\frac{1 + (-3)^{-(k-1)}}{1 - (-3)^{-(k-1)}} \right]$$

$$T_{k} = 2 \left[\frac{1 + (-3)^{-(k-1)}}{1 - (-3)^{-(k-1)}} \right]$$
Required to prove $T_{k+1} = 2 \left[\frac{1 + (-3)^{-(k+1)}}{1 - (-3)^{-(k+1)}} \right]$
Proof: LHS = T_{k+1}

$$= \frac{4 + 7k}{1 + T_{k}}$$
 (from recursive definition)
$$= \frac{4 + 2 \left[\frac{1 + (-3)^{-k}}{1 - (-3)^{-k}} \right]}{1 + 2 \left[\frac{1 + (-3)^{-k}}{1 - (-3)^{-k}} \right]}$$
 (from assumption) (1)
$$= \frac{4 \left[1 - (-3)^{-k} \right] + 2 \left[1 + (-3)^{-k} \right]}{1 \left[1 - (-3)^{-k} \right] + 2 \left[1 + (-3)^{-k} \right]}$$

$$= \frac{4 \left[1 - (-3)^{-k} \right] + 2 \left[1 + (-3)^{-k} \right]}{1 \left[1 - (-3)^{-k} \right] + 2 \left[1 + (-3)^{-k} \right]}$$

$$= \frac{4 \left[\frac{4 - (-1)^{k}}{3 - (-1)^{k}} + 2 \left[\frac{3 - 2(-1)^{k}}{3 - (-1)^{k} + 2 - (-1)^{k}} \right]}{3 - (-1)^{k} + 2 - (-1)^{k}}$$

$$= \frac{2 \left[\frac{3 - 3^{k}}{3 - (-1)^{k}} \right]}{3 - (-1)^{k} - (-1)^{k}}$$

$$= \frac{2 \left[\frac{3 - 3^{k}}{3 - 3^{k}} - (-1)^{k} \right]}{3 - (-1)^{k} - (-1)^{k}} - (-1)^{k} - (-1)^{k}$$

2024	TRIAL EXAMINATION FOR EXTENSION 2	1
	$=\frac{2\left[1-\frac{(-1)^{k}}{3^{k+1}}\right]}{1+\frac{(-1)^{k}}{3^{k+1}}}$	
	$= \frac{1}{1 + \frac{(-1)^{k}}{3^{k+1}}}$	
	$=\frac{2\left\lfloor 1 - \frac{(-1)^{k}}{3^{k+1}} \times \frac{-1}{-1} \right\rfloor}{1 + \frac{(-1)^{k}}{3^{k+1}} \times \frac{-1}{-1}}$	
	$= \frac{1}{1 + \frac{(-1)^{k}}{3^{k+1}} \times \frac{-1}{-1}}$	
	$=\frac{2\left[1+\frac{(-1)^{k+1}}{3^{k+1}}\times\frac{1}{1}\right]}{1-\frac{(-1)^{k+1}}{3^{k+1}}\times\frac{1}{1}}$	
	$1 - \frac{\left(-1\right)^{k+1}}{3^{k+1}} \times \frac{1}{1}$	
	$=\frac{2\left[1+\left(-\frac{1}{3}\right)^{k+1}\right]}{\left[1-\left(-\frac{1}{3}\right)^{k+1}\right]}$	
	$=\frac{2\left\lfloor 1+\left(-3\right)^{-\left(k+1\right)}\right\rfloor}{\left\lceil 1-\left(-3\right)^{-\left(k+1\right)}\right\rceil}$ (closed definition)	
	$\begin{bmatrix} 1 - (-3) \\ \end{bmatrix}$ $\therefore LHS = RHS$ If true for $n = k$, hence proven true for $n = k + 1$.	
	Since true for T_1 , hence proven true for $T_{1+1} = T_2$, $T_{2+1} = T_3$,	
	and so on. Hence true for all positive integers $n \ge 1$. ①	
16.	(a)(ii) $\lim_{n \to \infty} \left(-\frac{1}{3} \right)^n = 0$	Mostly did well.
	$2\left 1+\left(-\frac{1}{3}\right)^{n}\right $	
	$\therefore \lim_{n \to \infty} T_n = \lim_{n \to \infty} \frac{2 \left[1 + \left(-\frac{1}{3} \right)^n \right]}{\left[1 - \left(-\frac{1}{3} \right)^n \right]}$	
	$=\frac{2[1+0]}{[1-0]}$	
	=2	
16.	(b)(i) $I_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$ i.e. $I_{n+2} = \int_0^{\frac{\pi}{4}} \tan^{n+2} x dx$	Mostly did well. Some students did not know their trig. Identity well enough that they missed the fact that
		derivative of tan x is $\sec^2 x$ and

2024	TRIAL EAAMINATION FOR EATENSION 2	
		that $\tan^2 x = \sec^2 x - 1$, instead they
	$\therefore I_{n+2} = \int_{0}^{\frac{\pi}{4}} \tan^{n+2} x dx$	were getting very lost by using
	\mathbf{J}_0	integration by parts.
	$rac{\pi}{4}$	2 students did not answer the
	$= \int_{0}^{\frac{\pi}{4}} \tan^{n} x \tan^{2} x dx \qquad (1) \text{ or other method}$	required expression of
		$I_{n+2} + I_n = \frac{1}{n+1}$
	$= \int_{0}^{\frac{\pi}{4}} \tan^{n} x \left(\sec^{2} x - 1 \right) dx$	n+2 $n+1$
	$= \lim_{x \to -1} x(\sec x - 1) dx$	
	$\int \frac{\pi}{4}$ n 2 n -	
	$= \int_{0}^{\frac{\pi}{4}} \tan^{n} x \sec^{2} x - \tan^{n} x dx$	
	J ₀	
	$\int \frac{\pi}{4}$	
	$= \int_{0}^{\frac{\pi}{4}} \tan^{n} x \sec^{2} x dx - \int_{0}^{\frac{\pi}{4}} \tan^{n} x dx$	
	\mathbf{J}_0 \mathbf{J}_0	
	$\begin{bmatrix} & & & 1 \end{bmatrix} \neg \frac{\pi}{4}$	
	$I_{n+2} = \left \frac{\tan^{n+1} x}{n+1} \right _{0}^{\overline{4}} - I_{n}$	
	$I_{n+2} = \left \frac{n+1}{n+1} \right ^{-1} I_n$	
	$\left \begin{array}{c} n+1 \\ n \end{array} \right $	
	$\tan^{n+1}\left(\frac{\pi}{4}\right)$ $\tan^{n+1}(0)$	
	$I_{n+2} + I_n = \left \frac{(+)}{1} - \frac{(+)}{1} \right $	
	$I_{n+2} + I_n = \left \frac{\tan^{n+1}\left(\frac{\pi}{4}\right)}{n+1} - \frac{\tan^{n+1}(0)}{n+1} \right $	
	- $ -$	
	$I = \left \begin{pmatrix} 1 \end{pmatrix}^{n+1} \begin{pmatrix} 0 \end{pmatrix} \right $	
	$I_{n+2} + I_n = \left \frac{(1)^{n+1}}{n+1} - (0) \right $	
	$\therefore I_{n+2} + I_n = \frac{1}{n+1} \text{(as required)} \tag{1}$	
	$\therefore I_{n+2} + I_n = \frac{1}{n+1}$ (as required)	
	n + 1	
16	π.	A for students had problems
16.	(b)(ii) $I_4 = \int_0^{\frac{\pi}{4}} \tan^4 x dx$	A few students had problems
	$(0)(1) I_4 = \begin{bmatrix} \tan x & dx \end{bmatrix}$	with trig. identity
		$\tan^2 x + 1 = \sec^2 x$
	$I_{\perp} = \frac{1}{1} - I_{2}$	A few students made the
	$I_4 = \frac{1}{(2)+1} - I_2$	mistakes in identifying <i>n</i> value
		for I ₄ as 4, rather than 2, hence
	$I_2 = \frac{1}{(0)+1} - I_0$	
	(0)+1	had $\frac{1}{n+1}$ as $\frac{1}{(4)+1}$ instead of
	$\mathbf{e}^{\frac{\pi}{4}}$	
	$I_0 = \int_0^{\frac{\pi}{4}} \tan^0 x \ dx$	
	\mathbf{J}_0	$\frac{1}{(2)+1}$.
	$=\int_{0}^{\frac{4}{4}} 1 dx$	
	\mathbf{J}_0	
	- τ Γ η ^π	
	$= \begin{bmatrix} x \end{bmatrix}_0^{\frac{\pi}{4}}$	
	π	
	$=\frac{\pi}{4}$ (1)	
	$\therefore I_2 = 1 - \frac{\pi}{4}$	
	4	
	$\therefore I_2 = \frac{4-\pi}{4}$	
	$\therefore I_2 =$	
1	T	

2024	TRIAL EXAMINATION FOR EXTENSION 2	
	$\therefore I_4 = \frac{1}{3} - \frac{4 - \pi}{4}$ or $\frac{1}{3} - \left(1 - \frac{\pi}{4}\right)$	
	$=\frac{4-3(4-\pi)}{12}$ or $\frac{1}{3}-1+\frac{\pi}{4}$	
	$\therefore I_4 = \frac{3\pi - 8}{12} \text{ or } \frac{\pi}{4} - \frac{2}{3}$ (1)	
1.5		
16.	(b)(iii) $J_n = (-1)^n I_{2n}$	"Show" question: a few students skipped steps.
	$J_{n-1} = (-1)^{n-1} I_{2(n-1)}$	shipped steps.
	$J_n - J_{n-1} = (-1)^n I_{2n} - (-1)^{n-1} I_{2(n-1)}$ for $n \ge 1$	
	$=(-1)^{n-1}\left[(-1)I_{2n}-I_{2(n-1)}\right]$	
	$= (-1)^{n-1} (-1) \left[I_{2n} + I_{2(n-1)} \right]$	
	$= (-1)^{n} \left[I_{2n} + I_{2(n-1)} \right] \text{ and from part (i)}$	
	$I_{n+2} + I_n = \frac{1}{n+1}$	
	$I_{(2n)+2} + I_{(2n)} = \frac{1}{(2n)+1}$	
	$\therefore I_{(2n)} + I_{(2n)-2} = \frac{1}{(2n-2)+1}$	
	: $J_n - J_{n-1} = (-1)^n \left(\frac{1}{2n-1}\right)$ for $n \ge 1$	
16.	(b)(iv) From part (iii) $J_n - J_{n-1} = (-1)^n \left(\frac{1}{2n-1}\right)$	Mostly did well. Easy question to show since the
		series for J_m . Students need to
	$\therefore J_m = (J_m - J_{m-1}) + (J_{m-1} - J_{m-2}) + (J_{m-2} - J_{m-3})$	show the substitution of
	$++(J_1-J_0)+J_0$	$J_n - J_{n-1} = (-1)^n \left(\frac{1}{2n-1}\right)$ for
	$= J_0 + (J_m - J_{m-1}) + (J_{m-1} - J_{m-2}) + (J_{m-2} - J_{m-3})$	the sigma notation, and either
	$++(J_1-J_0)$ = $J_0 + (J_m - J_{m-1}) + (J_{m-1} - J_{m-2}) + (J_{m-2} - J_{m-3})$	show how $J_0 = \frac{\pi}{4}$.
		4
	$= J_0 + (-1)^1 \left(\frac{1}{2(1)-1}\right) + (-1)^2 \left(\frac{1}{2(2)-1}\right)$	
	$+(-1)^{3}\left(\frac{1}{2(3)-1}\right)++(-1)^{m}\left(\frac{1}{2m-1}\right)$ (1)	
	$= (-1)^0 I_{2(0)} + \sum_{n=1}^m (-1)^n \left(\frac{1}{2n-1}\right) $ (1)	
	$= I_0 + \sum_{n=1}^m \frac{(-1)^n}{2n-1}$	
L		

2024	TRIAL EXAMINATION FOR EXTENSION 2	
	$\therefore J_m = \frac{\pi}{4} + \sum_{n=1}^m \frac{(-1)^n}{2n-1} \text{(as required)}$	
16.	(b)(v) $I_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$ Let $u = \tan x$	Mostly did well.
	$\frac{du}{dx} = \sec^2 x$ $\frac{du}{dx} = \sec^2 x$ $\frac{du}{dx} = \tan^2 x + 1$ $\frac{dx}{du} = \frac{1}{\tan^2 x + 1}$ $dx = \frac{1}{u^2 + 1} du$ When $x = \frac{\pi}{4}, u = 1$ $x = 0, u = 0$ $\therefore I_n = \int_0^1 u^n \frac{du}{1 + u^2}$ $\therefore I_n = \int_0^1 \frac{u^n}{1 + u^2} du \text{(as required)} \qquad (1)$	
16.		Some students have approached
	(b)(vi) From (i) $I_n + I_{n+2} = \frac{1}{n+1}$. Since $I_n = \int_0^{\frac{\pi}{4}} \tan^n x dx > 0$, and $I_{n+2} = \int_0^{\frac{\pi}{4}} \tan^{n+2} x dx > 0$ Then $I_n < \frac{1}{n+1}$ and $I_{n+2} < \frac{1}{n+1}$ Hence $0 < I_n < \frac{1}{n+1}$.	from different perspective and did well. Students that did not give a comprehensive approach for either or both deductions were not awarded the marks.
	As $\lim_{n \to \infty} \frac{1}{n+1} = 0$ i.e. $\lim_{n \to \infty} I_n = 0$ and $\lim_{n \to \infty} I_{2n} = 0$	
	and $\lim_{n \to \infty} J_n = \lim_{n \to \infty} (-1)^n I_{2n}$	
	$\therefore \lim_{n \to \infty} J_n = 0 \qquad \text{(and } \frac{\pi}{4} + \sum_{n=1}^m \frac{(-1)^n}{2n-1} = 0$ $\pi \qquad \sum_{n=1}^m (-1)^n$	
	$\frac{\pi}{4} = -\sum_{n=1}^{m} \frac{(-1)^n}{2n-1}$	

$$\frac{\pi}{4} = \sum_{n=1}^{m} \frac{\left(-1\right)^{n+1}}{2n-1}$$